Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
ERJ Open Res ; 8(3)2022 Jul.
Article in English | MEDLINE | ID: covidwho-2029690

ABSTRACT

Respiratory tract infections (RTIs) are one of the most common reasons for seeking healthcare, but are amongst the most challenging diseases in terms of clinical decision-making. Proper and timely diagnosis is critical in order to optimise management and prevent further emergence of antimicrobial resistance by misuse or overuse of antibiotics. Diagnostic tools for RTIs include those involving syndromic and aetiological diagnosis: from clinical and radiological features to laboratory methods targeting both pathogen detection and host biomarkers, as well as their combinations in terms of clinical algorithms. They also include tools for predicting severity and monitoring treatment response. Unprecedented milestones have been achieved in the context of the COVID-19 pandemic, involving the most recent applications of diagnostic technologies both at genotypic and phenotypic level, which have changed paradigms in infectious respiratory diseases in terms of why, how and where diagnostics are performed. The aim of this review is to discuss advances in diagnostic tools that impact clinical decision-making, surveillance and follow-up of RTIs and tuberculosis. If properly harnessed, recent advances in diagnostic technologies, including omics and digital transformation, emerge as an unprecedented opportunity to tackle ongoing and future epidemics while handling antimicrobial resistance from a One Health perspective.

2.
J Clin Med ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006089

ABSTRACT

The measurement of specific T-cell responses can be a useful tool for COVID-19 diagnostics and clinical management. In this study, we evaluated the IFN-γ T-cell response against the main SARS-CoV-2 antigens (spike, nucleocapsid and membrane) in acute and convalescent individuals classified according to severity, and in vaccinated and unvaccinated controls. IgG against spike and nucleocapsid were also measured. Spike antigen triggered the highest number of T-cell responses. Acute patients showed a low percentage of positive responses when compared to convalescent (71.6% vs. 91.7%, respectively), but increased during hospitalization and with severity. Some convalescent patients showed an IFN-γ T-cell response more than 200 days after diagnosis. Only half of the vaccinated individuals displayed an IFN-γ T-cell response after the second dose. IgG response was found in a higher percentage of individuals compared to IFN-γ T-cell responses, and moderate correlations between both responses were seen. However, in some acute COVID-19 patients specific T-cell response was detected, but not IgG production. We found that the chances of an IFN-γ T-cell response against SARS-CoV-2 is low during acute phase, but may increase over time, and that only half of the vaccinated individuals had an IFN-γ T-cell response after the second dose.

3.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-1918957

ABSTRACT

Respiratory tract infections (RTI) are one of the commonest reasons for seeking healthcare, but are amongst the most challenging diseases in terms of clinical decision making. Proper and timely diagnosis is critical in order to optimize management and prevent further emergence of antimicrobial resistance by misuse, or overuse of antibiotics. Diagnostic tools for RTI include those involving syndromic and etiological diagnosis: from clinical and radiological features to laboratory methods targeting both pathogen detection and host biomarkers, as well as their combinations in terms of clinical algorithms. They also include tools for predicting severity and monitoring treatment response. Unprecedented milestones have been achieved in the context of the COVID-19 pandemic, involving the most recent applications of diagnostic technologies both at genotypic and phenotypic level, which have changed paradigms in infectious respiratory diseases in terms of why, how and where diagnostics are performed. The aim of this review is to discuss advances in diagnostic tools that impact clinical decision making, surveillance and follow-up of RTI and tuberculosis. If properly harnessed, recent advances in diagnostic technologies, including omics and digital transformation emerge as an unprecedented opportunity to tackle ongoing and future epidemics while handling antimicrobial resistance from a One Health perspective.

SELECTION OF CITATIONS
SEARCH DETAIL